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 

Abstract—The inherent vulnerability of the Global Navigation 

Satellite System (GNSS) leads to the ease of implementation of 

spoofing attacks. The latest GNSS spoofing attack schemes still 

suffer from low success rate, long attack time, and poor 

concealment. To improve the success rate, an efficient GNSS 

spoofing attack method for a vehicle-mounted Multi Sensors 

Fusion (MSF) system is proposed based on the scenario 

classification models with a spatial database. Firstly, the influence 

of the two typical urban scenarios, which are 1) the road with 

buildings on both sides and 2) tunnels, on the GNSS spoofing 

attack is analyzed. Then a dynamic Bayesian network model 

considering the sky visibility generated with the 3D building 

models and tunnel models inside the spatial database is established 

to quantify the difficulty of the attack. Furthermore, the scenarios 

of the victim can be classified into high-risk and low-risk scenarios. 

When the vehicle is just out of the tunnel or in open scenarios, 

attackers can select these high-risk scenarios and implement 

aggressive spoofing attacks. Then the efficiency of the GNSS 

spoofing attack can be significantly improved. Finally, the 

proposed attack scheme is demonstrated by actual world data with 

simulated spoofing attacks in urban areas. 

 
Index Terms—GNSS spoofing attacks, vehicle-mounted MSF 

navigation system, 3D building models, tunnel, Bayesian network 

I. INTRODUCTION 

UTONOMOUS driving technology has rapidly been 

improved and has become an essential development in the 

next generation of vehicle technology [1][2]. Autonomous 

Vehicles (AVs) are required to provide centimeter-level 

positioning accuracy for safe navigation [3][4]. However, the 

current localization technology is not mature in response to 

various malicious spoofing attack methods, including Global 

Navigation Satellite System (GNSS) spoofing methods [5][6], 

Light Detection and Ranging (LiDAR) spoofing methods [7][8], 

camera spoofing methods [9][10], Inertial Measurement Unit 

(IMU) spoofing methods [11][12], etc. These security issues 

may cause serious traffic accidents and potential risks to the 

autonomous driving industry [13][14]. Among them, the 
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methods of the GNSS spoofing attack are common [15][16], 

easily implemented [17], and low cost [18]. Thus, it is one of 

the most critical safety issues of localization and has attracted 

widespread attention. 

GNSS is a powerful navigational tool, but it is not absolutely 

secure. The US Department of Transportation first raises 

concerns about Global Position System (GPS) vulnerabilities 

and the over-reliance on GPS for critical safety applications 

[19], which may cause serious consequences. In a simple 

demonstration performed in a track [20], the GPS receivers are 

spoofed into reporting false position information every time in 

simulation, indicating the GPS is vulnerable to spoofing. Over 

the past decade, GNSS spoofing attacks have been reported in 

different application areas, such as marine traffic [21], 

unmanned vehicles [22], aircraft [23], mobile devices [24], etc. 

Currently, most researches focus on studying the design of 

spoofing and defense algorithm in the GNSS/Inertial 

Navigation System (INS) integrated navigation system, which 

has been widely used in actual applications [25][26]. Attackers 

can inject fault information into the GNSS measurements in the 

tightly coupled GNSS/INS system [27][28]. Some models can 

detect spoofing by comparing the relative trajectory estimated 

by the GNSS receiver and high-precision IMU [29][30]. A 

closed-loop evaluation model is designed to evaluate the impact 

of GNSS faults on the aircraft with an INS monitor [31]. Covert 

GNSS spoofing algorithms are performed based on a GPS/INS 

integrated system in the application of unmanned aerial 

vehicles [32][33]. The attackers can build a graph model for a 

given road network and then perform aggressive action to 

enable them to derive potential destinations [34]. In summary, 

all of these researches are based on the GNSS/INS integrated 

navigation system. Due to the lack of position information of a 

critical observation quantity from LiDAR, the position 

information output of the GNSS/IMU integrated navigation 

system will be highly dependent on GNSS. However, many 

Multi-Sensors Fusion (MSF) systems equip with LiDAR in 

AVs [35], so these spoofing models may be inefficacy. 
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In the research on GNSS spoofing attacks for MSF systems, 

researchers from the University of California, Irvine (UCI) 

perform the first security study on MSF systems under GPS 

spoofing and design the Fusion-ripper in vehicle-mounted MSF 

navigation systems [36]. A spoofing method is proposed in [37], 

which fools the LiDAR perception module via adversarial 

trajectory perturbation of GNSS spoofing attack. Furthermore, 

different attack models are explored and discussed in the 

robotic vehicle system, and different spoofing attack vectors are 

discovered, including the aggressive spoofing attack method to 

MSF [38]. The research on the GNSS spoofing of the Kalman 

Filter (KF) based on the MSF positioning system for AVs starts 

late. There are few related research papers to explore the 

boundaries of spoofing in MSF positioning systems, which may 

threaten the security of the vehicle-mounted MSF navigation 

system in the future. Therefore, the research on GNSS spoofing 

attacks for the MSF model has practical application value. 

Since AVs inevitably operate in various complex and 

dynamic scenarios, do the latest spoofing attack schemes cover 

all application scenarios? In what scenarios can a spoofing 

attack be more likely to succeed? What kind of models can 

evaluate the vulnerability of GNSS? There have been few 

papers discussing the above issues. Therefore, this paper 

conducts the first research on the above problems, aiming to fill 

the gaps in related fields. We focus on the environment in which 

MSF systems are more likely to spoof and propose a novel 

spoofing attack algorithm based on scenario classification 

models. Aiming at the MSF navigation system of AVs based on 

a loosely-coupled KF, this paper researches the state-of-the-art 

GNSS spoofing attack method [36] and explores the boundary 

of GNSS spoofing technology, and develops a novel GNSS 

spoofing attack scheme based on scenario classification models. 

This paper can be summarized from three perspectives. Firstly, 

we introduce the state-of-the-art spoofing scheme and its 

problems. Following this, we design and develop scenario 

classification models to select the high-risk spoofing areas. 

Finally, we verify our model with real-world data with 

simulated spoofing attacks, and the efficiency of the GNSS 

spoofing attack can be significantly improved. 

The main contributions of this paper are as follows.  

1) The GNSS skyplots are generated through the 3D building 

models, which eventually generate a sky visibility map. Based 

on the latest spoofing attack algorithm [36], we establish the 

link between sky visibility and the uncertainties of LiDAR and 

GNSS, respectively. 

2) We analyze the influence of tunnels on the GNSS spoofing 

attack. The vulnerability of MSF is demonstrated in this 

scenario. As a result, attackers can successfully implement 

efficient GNSS spoofing attacks when the vehicle is just out of 

the tunnel. 

3) We identified urban areas with high GNSS spoofing risks 

via a Bayesian network model, which can select specific high-

risk scenarios with high MSF system vulnerability based on 

scenario classification models. The model can help attackers 

improve the efficiency of the GNSS spoofing attack. 

The structure of the paper is as follows. Section I is the 

introduction and includes the current research status. Section II 

introduces the principle and challenges of the state-of-the-art 

GNSS spoofing attack scheme for the vehicle-mounted MSF 

navigation system. Section III illustrates the structure and the 

parameters of the proposed GNSS spoofing attack method. 

Section IV establishes the proposed scenario classification 

models for this effective spoofing attack. Section V verifies the 

effectiveness of the proposed spoofing attack algorithm through 

real-world data. Section VI presents the conclusion. 

II. PROBLEM STATEMENT 

A. Principle of the State-of-the-art GNSS Spoofing Attack 

Scheme for MSF System 

Since most MSF systems are anti-interference, they could 

prevent temporary outliers or accidental failures. The most 

common anti-interference method is the Chi-square test, 

which is widely used in actual applications [39][40]. 

However, well-designed GNSS spoofing attack schemes can 

fully use the MSF systems’ inherent defects to perform 

aggressive spoofing attacks. Hence, these advanced GNSS 

spoofing attack signals are difficult to be detected by 

defensive measures. An illustration of a state-of-the-art GNSS 

spoofing attack scheme is shown in Fig.1 [36].  

 
Fig.1. A state-of-the-art GNSS spoofing attack scheme. The principle 

is to maximize the lateral deviation of the vehicle, and the purpose is 

to find the spoofing parameters d (the constant value attack parameter) 

and f (the exponential value attack parameter). Moreover, the two 

thresholds (𝐷𝑡ℎ−1 and 𝐷𝑡ℎ−2) can be calculated via the lane line’s width 

𝐿 and the vehicle’s width 𝐶 [36][41]. 

 

The maximum GNSS spoofing epoch ( 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

) that the 

attackers can implement is: 

𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

= 𝑇𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

∙ 𝑓𝐺 (1) 

where 𝑓𝐺  is the GNSS update frequency, and 𝑇𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓𝑒𝑑

 is the 

maximum attack time. Generally, the GNSS spoofing behavior 

is added a deviation 𝛥𝒑̃𝑗
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

 to the real GNSS signal. 

Hence, the spoofed GNSS sequence can be expressed as: 

{𝛥𝒑̃1
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

, 𝛥𝒑̃2
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

, ⋯ , 𝛥𝒑̃𝑗
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

}, 𝑗 ≤ 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

  (2) 

Then the GNSS measurement values can be expressed as: 
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𝒑̃𝑗
𝐺 = 𝒑𝑗

𝐺 + 𝛥𝒑̃𝑗
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

, 𝑗 = 1,2, ⋯ 𝑎𝑛𝑑 𝑗 ≤ 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

 (3) 

where 𝒑̃𝑗
𝐺  is the spoofed position information, and 𝒑𝑗

𝐺  is the 

original GNSS position information. 𝛥𝒑̃𝑗
𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑

=

[𝛥𝐿̃𝑗 𝛥𝜆̃𝑗 0]
𝑇

 is the deviation. Assume that 𝛥𝑿̃𝑗(𝑝) =

[𝛥𝑿̃𝑗
𝑥(𝑝) 𝛥𝑿̃𝑗

𝑦(𝑝) 0]
𝑇

is the output deviation of the MSF 

system due to the spoofing attack, where 𝛥𝑿̃𝑗
𝑥(𝑝) is the lateral 

deviation expected to be generated after the spoofing attack and 

𝛥𝑿̃𝑗
𝑦(𝑝) is the vertical deviation. 

The fundamental condition of the scheme is that the 

deviations cannot be detected by the Chi-square test, and the 

spoofing time cannot be unlimited. Furthermore, the state-of-

the-art spoofing attack scheme is divided into two stages: the 

constant value spoofing attack scheme and the exponential 

value spoofing attack scheme. 

Stage 1: The purpose of this stage is to find the vulnerable 

period of the MSF system. In this stage, the parameters and 

conditions are: 

𝑑 = ‖𝑪𝑛
𝑏 ∙ 𝛥𝒑̃𝑗

𝐺_𝑆𝑝𝑜𝑜𝑓𝑒𝑑
‖ 

𝑠𝑡. 1, ‖𝛥𝑿̃𝑗
𝑥(𝑝)‖ < 𝐷𝑡ℎ−1 

𝑠𝑡. 2, 𝜒𝑗
2 < 𝜒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

2   

𝑠𝑡. 3, 𝑗 ≤ 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

 

(4) 

where 𝑑  is the attack parameter. 𝑪𝑛
𝑏  is the direction cosine 

matrix from n-frame to b-frame. ‖∙‖ is the process of modular 

arithmetic. 𝐷𝑡ℎ−1 is the threshold of stage 1. 𝜒𝑗
2 is the 𝑗-th Chi-

square test value, and 𝜒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
2  is the threshold of the Chi-

square test value. 𝑗 is the total attack epoch, which is related to 

the total time for spoofing, 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

 the maximum attack epoch 

due to the limited spoofing time. When the lateral deviation 

exceeds  𝐷𝑡ℎ−1, the spoofing attack will enter stage 2, which is 

an exponential value attack scheme. 

Stage 2: When the vulnerability period is found, attackers 

will perform exponential value spoofing attacks, triggering the 

take-over effect [36] and quickly completing the spoofing 

process. The parameters and conditions are: 

𝑑 ⋅ 𝑓𝜏 = ‖𝑪𝑛
𝑏 ∙ 𝛥𝒑̃

𝑗

𝐺𝑆𝑝𝑜𝑜𝑓𝑒𝑑‖ 

𝑠𝑡. 1, 𝐷𝑡ℎ−1 ≤ ‖𝛥𝑿̃𝑗
𝑥(𝑝)‖ < 𝐷𝑡ℎ−2 

𝑠𝑡. 2, 𝜒𝑗
2 < 𝜒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

2   

𝑠𝑡. 3, 𝑗 ≤ 𝑘𝑚𝑎𝑥
𝑆𝑝𝑜𝑜𝑓

 

(5) 

where 𝑓 is the exponential value parameter of the attacker. 𝜏 is 

the exponential value attack epoch. When the lateral deviation 

exceeds the threshold 𝐷𝑡ℎ−2, the spoofing attacks are successful. 

‖𝛥𝑿̃𝑗
𝑥(𝑝)‖ ≥ 𝐷𝑡ℎ−2 (6) 

The principle of this scheme is to maximize the lateral 

deviation of the vehicle and find the corresponding parameters 

𝑑 and 𝑓. 

{𝑑, 𝑓} = ℳ{𝛥𝑿̃𝑗
𝑥(𝑝)} (7) 

where ℳ{∙} is the calculative process to find the parameters 𝑑 

and 𝑓 via maximizing the lateral deviation. 

B. Challenges of the State-of-the-art GNSS Spoofing Attack 

Scheme for MSF System 

1) Despite the difficulty of implementing a successful 

spoofing attack in some scenarios with poor GNSS quality and 

high LiDAR signal quality, the state-of-the-art persistent 

spoofing attack scheme always tries to perform attacks all the 

time. Therefore, the success rate of aimless multiple attempted 

attacks is low. 

2) The defense measures in many AVs may be strengthened 

with the development of anti-spoofing technology. Therefore, 

some new defense algorithms may discover the persistent 

spoofing attack signals due to the long tracking time. 

3) The total time for spoofing is limited. Therefore, the state-

of-the-art attack technique may be unable to complete the whole 

spoofing process in a limited time. 

In conclusion, since vehicle-mounted MSF navigation 

systems inevitably operate in various complex and dynamic 

scenarios, the state-of-the-art GNSS spoofing attack scheme 

neglects to consider the impact of environments, so it is 

inefficient and may be easy to be detected. 

III. PARAMETERS AND STRUCTURE OF THE PROPOSED 

EFFECTIVE GNSS SPOOFING ATTACK METHOD 

The MSF system can achieve complementary advantages 

between different sensors, achieving high-precious and robust 

positioning results in various scenarios, which is an excellent 

advantage of the MSF system. However, it also provides an 

opportunity for GNSS spoofing attacks. GNSS and LiDAR 

signal quality are different in different scenarios [42], so 

attackers can fully use some specific scenarios where the 

LiDAR positioning accuracy is not high. In contrast, the GNSS 

signal quality is better. Our main contribution is to build a more 

efficient GNSS spoofing attack method with the scenario 

classification models, improving the success rate and reducing 

the attack times.  

A. Definition of the Spoofing Parameters 

Our research object is mainly the AVs, so we mainly analyze 

the accuracy of navigation sensors in urban environments. For 

the GNSS positioning accuracy, attackers can judge the 

received signals' strength and other information to determine 

the GNSS signal quality of the victim [43]. For the LiDAR 

positioning accuracy, attackers can confirm the signal quality 

by judging whether the environmental characteristics around 

the victim are apparent, such as how many buildings are around 

the vehicle and whether the peripheral feature points are 

sufficiently obvious, etc. [44]. Hence, attackers could actively 

choose to carry out GNSS spoofing attacks in these specific 

scenes where the LiDAR positioning accuracy is not high. In 

contrast, the GNSS signals are usually relatively healthy, 

including some open environments such as elevated roads, 

suburban roads, roundabouts, highways, and other similar 

scenarios, as shown in Fig.2. These scenarios can be identified 

as high-risk areas. 
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Fig. 2. Scenes of untrustworthy LiDAR signal and reliable GNSS 

signal. 

 

To facilitate the quantification, we define a few spoofing-

related parameters and random variables of the proposed 

spoofing models. Symbols and their description are shown in 

Table I.  

TABLE I 

SYMBOLS AND THEIR DESCRIPTION 
 

Symbol Description 

𝒑̃𝑘 

The position information of the deceived vehicle 

detected by the attacker.  

𝒑̃𝑘 = [𝐿̃𝑘 𝜆̃𝑘 ℎ̃𝑘]𝑇 

𝒗̃𝑘 

The velocity information of the deceived vehicle 

detected by the attacker.  

𝒗̃𝑘 = [𝑣̃𝑘
𝑥 𝑣̃𝑘

𝑦
𝑣̃𝑘

𝑧]
𝑇

 

𝑀𝑘 The prior map information. 

𝑆𝑘 

The building shadow on both sides of the lane of the 

spoofed vehicle detected by the attacker. The detailed 

explanations and demonstrations are in Section IV.C. 

𝑆𝑘 = 𝑆ℎ𝑎𝑑𝑜𝑤(𝒑̃𝑘) ∈ (0,1) 

𝑇𝑘 

Whether the vehicle detected by the attacker is running 

in the tunnel.  

𝑇𝑘 = 𝑇𝑢𝑛𝑛𝑒𝑙(𝒑̃𝑘) ∈ {𝑦𝑒𝑠, 𝑛𝑜} 

𝑇𝑂𝑘 

Whether the vehicle detected by the attacker is just out 

of the tunnel.  

𝑇𝑂𝑘 = 𝑇𝑢𝑛𝑛𝑒𝑙_𝑂𝑢𝑡(𝒑̃𝑘) ∈ {𝑦𝑒𝑠, 𝑛𝑜} 

𝑅̃𝑘
𝐺  

The GNSS uncertainty of the spoofed vehicle assessed 

by the attacker.  

𝑅̃𝑘
𝐺 = 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦_𝐺𝑁𝑆𝑆(𝒑̃𝑘) 

𝑅̃𝑘
𝐿 

The LiDAR uncertainty of the spoofed vehicle 

assessed by the attacker.  

𝑅̃𝑘
𝐿 = 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦_𝐿𝑖𝐷𝐴𝑅(𝒑̃𝑘) 

𝐴𝑘 

Whether the attacker starts GNSS spoofing attacks on 

the vehicle.  

𝐴𝑘 = 𝐴𝑡𝑡𝑎𝑐𝑘(𝒑̃𝑘) ∈ {𝑦𝑒𝑠, 𝑛𝑜} 

𝑃𝑘
𝐴 

The probability that the attacker starts GNSS spoofing 

attacks on the vehicle.  

𝑃𝑘
𝐴 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐴𝑘 = 1) ∈ {1,0} 

 

where, 𝑀𝑘  denotes the prior map information, including the 

tunnel information 𝑀𝑘
𝑇, which is a positioning collection about 

all the tunnels in an area i.g., {𝒑1
𝑇 , 𝒑2

𝑇 , ⋯ , 𝒑𝑖
𝑇}. 𝑀𝑘

𝐵 denotes the 

building model information, which is a 3D city building model 

information in an area. It is defined as follows. 

𝑀𝑘 = 𝑀𝑎𝑝(𝒑̃𝑘) = {𝑀𝑘
𝐵 , 𝑀𝑘

𝑇} (8) 

B. Structure the Proposed Spoofing Attack Method 

To facilitate the quantification of the spoofing attack model, 

we follow the assumptions of [36] for the attackers and the 

victims. Moreover, we make some other reasonable 

assumptions that are theoretically implementable.  

For the attackers: 

1) Equipped with high-precision navigation sensors and 

know the actual position and velocity of the victim. 

2) Have the ability to perceive the environment of the 

victim's vehicle and know the tunnel and 3D building model 

information in which the victim is located. 

3) Have the ability to perform a GNSS spoofing attack and 

completely replace the original GNSS signals of the victim. 

For the victims: 

1) The victim's MSF system sensors include GNSS, IMU, 

and LiDAR. 

2) The MSF models are based on error-state KF. 

3) The uncertainties of GNSS and LiDAR are based on the 

sensors' quality in different scenarios. 

Following these assumptions, attackers can monitor the 

victim's position and velocity and design scenario classification 

models to determine whether the victim is in a high-risk 

spoofing area, as shown in Fig.3. 

 
Fig.3. Diagram of the proposed GNSS spoofing attack scheme based 

on scenario classification models. Blue denotes the prior information 

of the deceived vehicle detected by attackers. Green denotes the map 

information of the victim. Purple denotes the regression models. Pink 

denotes whether it is a high-risk scenario. Red denotes the final 

spoofing scenarios probability. 

 

It should be noted that this Section mainly introduces the 

spoofing parameter definition and the structure of the proposed 

spoofing attack method, so it is the basis for the following 

sections. 

IV. SELECTION OF AREAS FOR EFFECTIVE GNSS SPOOFING 

ATTACKS BASED ON SCENARIO CLASSIFICATION MODELS 

A. Selection of Spoofing Scenarios Related to the Tunnel 

Tunnels are common and significant in transport systems, 

especially in some megacities. Take Hong Kong as an example. 

There are currently at least 18 tunnels (Over 0.5km) [45] and 

about 50 corridors [46]. They play an essential role in the 

movement of passengers and freight. Partial tunnels in Hong 

Kong are labeled blue on Google earth in Fig.4(A).  
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Fig.4. (A) shows the tunnels in Hong Kong [48]. (B) and (C) are real-

world scenes when the vehicle is driving in and out of the tunnel, 

respectively. 

 

Since LiDAR has few effective feature points due to the 

single feature point in the tunnel, it will cause severe 

degradation in matching results [47], which has a high chance 

of leading to longitudinal positioning errors. In addition, the 

system is in a wholly occluded scenario and will not receive any 

GNSS information in the tunnel. Therefore, in this scenario, 

attackers will not conduct spoofing attacks to prevent 

ineffective attacks. Fig.4(B) shows real-world scenes when the 

vehicle is driving in the tunnel. 

When the vehicle is driving just out of the tunnel, as shown 

in Fig.4(C), the vehicle can immediately receive the GNSS 

signals. However, the initial value of the LiDAR signal has a 

significant error due to the accumulated errors inside the tunnel. 

The inaccurate initial value will cause the uncertainty of LiDAR 

to increase rapidly [49]. As a result, the MSF system heavily 

relies on the GNSS positioning results when the vehicle has just 

exited the tunnel. Due to the high dependence of the MSF 

system on GNSS at this point, capturing such a scenario for an 

effective spoofing attack will significantly increase the success 

rate, reduce the number of attempts, and decrease the attack 

time correspondingly. The classification model of the tunnel 

scenario is established as follows. 

At first, the attackers use the monitored position information 

and prior map information to determine whether the detected 

vehicle has entered the tunnel, which is defined as follows. 

𝑃{𝑇𝑘 = 𝑦𝑒𝑠|𝒑̃𝑘 , 𝑀𝑘} = {
1, (𝐿̃𝑘, 𝜆̃𝑘) ∈ 𝑀𝑘

𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

𝑃{𝑇𝑘 = 𝑛𝑜|𝒑̃𝑘 , 𝑀𝑘} = 1 − 𝑃{𝑇𝑘 = 𝑦𝑒𝑠|𝒑̃𝑘, 𝑀𝑘} (10) 

When 𝑃{𝑇𝑘 = 𝑦𝑒𝑠} = 1, indicating the vehicle has entered 

the tunnel. After following the vehicle for a while, attackers will 

determine whether the vehicle has just exited the tunnel or not. 

The parameters are defined as follows.  

  𝑃{𝑇𝑂𝑘 = 𝑦𝑒𝑠|𝒑̃𝑘 , 𝑀𝑘, 𝑇𝑘} = 

{
1, 𝑇𝑘 = 𝑛𝑜, {𝒑̃𝑘0−𝜏 ⋯ 𝒑̃𝑘0−1} ∈ 𝑀𝑇 and 𝑘 − 𝑘0 < 𝜅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(11) 

where 𝑘0 is the first point where the vehicle is out of the tunnel. 

𝜏 is the first point where the vehicle is in the tunnel. 𝜅 is the 

maximum spoofing time when the vehicle is out of the tunnel. 

Some conditions must be fulfilled when the vehicle has just 

exited the tunnel. 

1) {𝒑̃𝑘0−𝜏 ⋯ 𝒑̃𝑘0−1} ∈ 𝑀𝑇, i.e., the vehicle has just been in 

the tunnel for a while. 

2) 𝑃{𝑇𝑘 = 𝑛𝑜|𝒑̃𝑘 ,  𝑀𝑘}=1, i.e., the vehicle is no longer in the 

tunnel. 

3) 𝑘 − 𝑘0 < 𝜅, i.e., the positioning results of LiDAR have 

not yet fully converged to accurate values evaluated by the MSF 

system. 

Then, attackers determine whether the vehicle is just out of 

the tunnel with the following equation. 

𝑃𝑘
𝑇 = {𝐴𝑘 = 𝑦𝑒𝑠|𝑇𝑂𝑘} = {

1
0

, 𝑇𝑂𝑘 = 𝑦𝑒𝑠
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

When 𝑃𝑘
𝑇 = 1 , it is a high-risk scenario, indicating the 

vehicle is just out of the tunnel. Then attackers will capture this 

specified scenario and quickly perform aggressive GNSS 

spoofing attacks on the victim. 

B. Selection of Spoofing Scenarios Related to the Sky 

Visibility 

The surrounding buildings' number and height directly affect 

the signal quality of LiDAR and GNSS. Generally, when high 

buildings are on the sides of the road, the GNSS signal quality 

will worsen. In this case, the number of visible satellites is 

reduced due to the building shadow [49]. In addition, the 

notorious multipath effect may arise, reducing the GNSS 

positioning accuracy significantly. Conversely, the more 

buildings on both sides, the more effective feature points can be 

extracted by the LiDAR theoretically. Furthermore, the LiDAR 

localization accuracy is higher [44]. Likewise, the GNSS 

signals are trustworthy when there are few buildings on both 

sides in some scenarios. In contrast, insufficient effective 

LiDAR feature points may lead to lower positioning accuracy 

or even fail to match successfully.  

The sky visibility can evaluate the obstruction of the vehicle 

by buildings on both sides of the road [50]. It is a valuable tool 

for processing GNSS data, which can reveal the impact of 

obstructions on satellite visibility. At present, skyplots can be 

generated via 3D models [51], LiDAR [52], cameras [53], etc. 

Inspired by these previous works, the attackers can generate a 

skyplot with the 3D models of the surrounding buildings to 

evaluate the shadow degree because attackers cannot obtain the 

LiDAR and GNSS data of the vehicle. Fig.5(A) shows two 

scenarios’ skyplots in Mong Kok of Hong Kong: an open-sky 

area (Scenario 1) with few buildings and a deep urban area 

(Scenario 2) with some high facilities on both sides of the road, 

which are common in modern cities. 

  

(A)                                                         (B) 

Fig.5. Sky visibility of two real-world scenarios: an open-sky area and 
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a deep urban area. 

 

We use the ratio of the buildings’ shaded area to evaluate the 

degree of shading, which can be defined as sky visibility. 

𝑆𝑘 = 𝑆ℎ𝑦_𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝒑̃𝑘) =
𝐴𝑟𝑒𝑎(𝑠ℎ𝑎𝑑𝑜𝑤)

𝜋
 (13) 

𝑆𝑘 ∈ (0,1) (14) 

where, 𝑆𝑘  is the area ratio, which is between 0 and 1, and it 

indicates the sky visibility in the position 𝒑̃𝑘 . 𝐴𝑟𝑒𝑎(∙)  is to 

calculate the area of the gray shadow area, as shown in Fig.5(A). 

When the ratio is higher, the degree of the shadow is lower, and 

vice versa. When the value is equal to 1, it indicates there are 

no buildings around the area, and it is an entirely open scene. 

Then we calculate all the ratios to get the sky visibility of the 

entire area in Fig.5(A), and the results are shown in Fig.5(B). 

The yellow regions represent open-sky areas, and the blue 

regions represent deep urban areas. 

It is noted that in some open-sky scenarios, the GNSS signal 

is trustworthy, and the LiDAR signal quality is poor. Then the 

system mainly relies on the navigation information provided by 

GNSS, so the MSF system may be vulnerable to being attacked 

successfully. We can get the high-risk attack interval via the 

state-of-the-art spoofing attack algorithm [36]. For instance, 

when the sampling frequencies of GNSS, LiDAR, and IMU are 

1Hz, 10Hz, and 400Hz, respectively, the state-of-the-art 

spoofing attack scheme is performed to a loosely-couple 

GNSS/IMU/LiDAR KF MSF system [36][41]. Consequently, 

Fig.6 indicates the relationship between GNSS and LiDAR 

uncertainty for a successful spoofing attack. 𝜎𝐺 and 𝜎𝐿 are the 

standard deviations of GNSS and LiDAR, which are the square 

root of GNSS uncertainty 𝑅𝑘
𝐺  and LiDAR uncertainty 𝑅𝑘

𝐿. 

 
Fig.6. The relationship between GNSS and LiDAR uncertainty for a 

successful spoofing attack. The right gray part of the curve is defined 

as the high-risk attack interval. 

 

Furthermore, we build the relationship between the shy 

visibility, velocity, and uncertainty of GNSS and LiDAR. 

𝑅𝑘
𝐺 = 𝑓𝐺(𝑆𝑘) (15) 

𝑅𝑘
𝐿 = 𝑓𝐿(𝑆𝑘 , 𝒗̃𝑘) (16) 

where, 𝑅𝑘
𝐺

 
is related to the sky visibility 𝑆𝑘, and the relationship 

is 𝑓𝐺 . We can represent the relationship 𝑓𝐺 with a linear least 

square function of the influential factor. Similarly, 𝑅𝑘
𝐿

 
is related 

to the sky visibility 𝑆𝑘 and the vehicle’s velocity 𝒗̃𝑘 assessed by 

attackers. The relationship is 𝑓𝐿  with a linear function of 

influential factors. In general, the faster the velocity, the worse 

the quality of LiDAR [54]. Then we can train real data to get 

the regression function 𝑓𝐺 and 𝑓𝐿. Therefore, when the vehicle 

does not enter the tunnel, the sky visibility can determine 

whether the vehicle is in a high-risk attack scenario or not. 

𝑃𝑘
𝑆 = {𝐴𝑘 = 𝑦𝑒𝑠|𝑅̃𝑘

𝐿 , 𝑅̃𝑘
𝐺 , 𝑇𝑘}   

= {
1, (𝑅̃𝑘

𝐿 , 𝑅̃𝑘
𝐺) ∈ 𝛤𝐿𝐺

0

, 𝑇𝑂𝑘 = 𝑛𝑜
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(17) 

where 𝑅̃𝑘
𝐺

 
is the GNSS uncertainty of the spoofed vehicle 

assessed by the attacker with the network, 𝑎𝑛𝑑 𝑅̃𝑘
𝐿  is the 

LiDAR uncertainty of the spoofed vehicle assessed by the 

attacker with the network. 𝛤𝐿𝐺  is an assemblage that represents 

the relationship between GNSS uncertainty and LiDAR 

uncertainty for a successful spoofing attack. When 𝑃𝑘
𝑆 = 1, the 

vehicle is in a relatively open-sky area, a high-risk scenario.  

C. Scenario Classification Models based on Dynamic 

Bayesian Network 

We build scenario classification models based on a dynamic 

Bayesian network, which can evaluate whether the MSF system 

is in a relatively vulnerable state and determine whether the 

victim is in a region that is easy to be attacked or not. The 

dynamic Bayesian network model is based on the relationship 

of these parameters, which are introduced detailedly in Sections 

IV.B and IV.C. Fig.7 shows two slices of the dynamic Bayesian 

network model proposed in this paper.  

 
Fig.7. Two slices of the dynamic Bayesian network model. The 

implications of the colors are the same as in Fig.3. The rectangular and 

round shapes denote variables and probabilities, respectively. 

 

The output of the network is 𝑃𝑘
𝐴, which is marked red in Fig.7, 

i.e., the probability that the victim is in a high-risk spoofing 

scenario. Finally, when 𝑃𝑘
𝑇 = 1 (Eq.12) or 𝑃𝑘

𝑆 = 1 (Eq.17), the 

vehicle is in a high-risk attack scenario, which is related to the 

tunnel or the sky visibility.  

𝑃𝑘
𝐴 = {

1,
0

𝑃𝑘
𝑇 = 1 𝑜𝑟 𝑃𝑘

𝑆 = 1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (18) 

If 𝑃𝑘
𝐴 = 1, this scenario is classified as a high-risk attack 

region for MSF systems, and attackers can capture this 

specified scenario and quickly perform aggressive GNSS 

spoofing attacks. Finally, the success rate can be improved 

significantly. 
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V. EXPERIMENTS 

This paper develops a software platform based on the open-

sourcing autonomous driving platform Autoware [55] and the 

PSINS C++ toolbox [56]. The loosely-couple 

GNSS/IMU/LiDAR KF MSF algorithm is implemented to 

further develop and verify the proposed GNSS spoofing attack 

algorithm. In this Section, some experimental results will be 

illustrated. 

A. Setup  

The dataset used is primarily based on the data platform of 

the Intelligent Positioning and Navigation Laboratory of Hong 

Kong Polytechnic University [57]. It is an open-sourcing 

localization dataset collected in Tokyo and Hong Kong. Fig.8 

shows the data collection platform and sensors for the Hong 

Kong dataset. The collection platform is equipped with LiDAR, 

GNSS, IMU, and other hardware platforms.  

 
Fig.8. Acquisition platform of Hong Kong dataset. The SPAN-CPT 

system (green box) can provide ground truth values. 

 

The parameters of the sensors equipped with the data 

platform are described in Table II: 

TABLE Ⅱ 

MAIN SPECIFICATIONS OF THE SENSORS 
 

Sensors Version Frequency Others 

3D LiDAR 
HDL 32E 

Velodyne 
10Hz 

360 HFOV, +10~-30 

VFOV, 80m range. 

IMU Xsens Mti 10 400Hz AHRS 

GNSS 
Receivers 

u-blox ZED-
F9P 

1Hz 
GPS L1/L2, Beidou, 

Galileo. 

NovAtel 

FlexPak6 
1Hz 

GPS L1/L2, Beidou, 

Galileo. 

RTK 

GNSS/INS 

NovAtel 

SPAN-CPT 
1Hz 

RMSE: 5cm. It provides 

ground truth values. 

 

In the experiments, we use RTKLIB to obtain the final 

positioning solution of GNSS [58]. The ‘Positioning Model’ is 

set to ‘Kinematic’. The ‘Integer Ambiguity Resolution’ is set to 

‘Fix and Hold’. The ‘Min Ratio to Fix Ambiguity’ is 3. Besides, 

the reference station is about 7km [59]. 

B. GNSS spoofing attack experiment in urban areas 

According to the state-of-the-art GNSS attack scheme 

[36][41], GNSS spoofing attacks are performed on the loosely-

couple GNSS/IMU/LiDAR KF MSF system, and the 

uncertainty estimation of the sensors is based on the signal 

quality [60][61]. In the spoofing attack experiment, the attack 

window is set to 10s. We follow the Fusion-ripper to calculate 

the thresholds of a successful attack, which are generally 

calculated by the width of the vehicle and lane. Then we 

calculate the 𝐷𝑡ℎ−1  and 𝐷𝑡ℎ−2  which are set to 0.745m and 

2.855m, respectively. When the maximum lateral deviation 

exceeds 2.855m, it is considered a successful spoofing attack 

[36][41]. Then we implement GNSS spoofing attacks in two 

different urban scenarios. 

Our research object is based on the GNSS/INS/LiDAR MSF 

system of AVs. The indicator of the effective evaluation of a 

GNSS spoofing attack is mainly the 2D positioning error. This 

parameter determines whether the victim exceeds the threshold 

or not, and then we can get the spoofing successful number and 

success rate which directly threatens the system security. Since 

it is difficult to reflect the spoofing results from other 

parameters, we only show the most critical results to highlight 

the main contributions of the proposed model. 

Scenario 1: 

The first scenario is collected in a typical urban canyon of 

Hong Kong near Tsim Sha Tsui, which involves high-rising 

buildings and numerous dynamic objects. In this scenario, the 

vehicles mainly operate in deep urban areas, simultaneously 

obscured by tall buildings on both sides, resulting in poor GNSS 

performance. In addition, there are also some relatively open-

sky areas, and the vehicle does not pass through a tunnel. The 

trajectory and velocity information of the vehicle and the sky 

visibility information of this area are shown in Fig.9(A) and 

Fig.9(B). Afterward, the scenario classification model proposed 

in section IV is used to determine the final high-risk spoofing 

interval, as shown in Fig.9(C). 

 
(A)                                                         (B) 

 

 
(C) 

Fig.9. (A) and (B) are the velocity and sky visibility information of the 

vehicle. (C) is vehicle trajectory and high-risk attack interval for 

scenario 1. The red interval is the high-risk area, and the black 

trajectory is the area unfavorable to attack. 

 

In the manuscript, we fully compare different strategies 

under the same experimental conditions. Based on previous 
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research, the main GNSS attack strategies can be divided into 

the following types: constant value attack, exponential value 

attack, Fusion-ripper, and the spoofing attack scheme based on 

the scenario classification model proposed in this paper. 

We randomly choose the starting point for the spoofing 

attack in the high-risk interval and the whole interval. In the 

experiment, we use two types of GNSS receivers and set the 

total attack number as 50. As a result, the successful numbers 

of the constant value attack are only 5 and 6 for the two GNSS 

receivers, and the successful numbers of the exponential value 

attack are only 6 and 7. Moreover, only 9 and 12 attacks can be 

successful in the whole interval for the two GNSS receivers 

with the model of the Fusion-ripper. In contrast, with the 

scenario classification model, the numbers of successful attacks 

increase to 36 and 41, respectively.  

Scenario 2: 

The second scenario is in Whampoa. The vehicle starts in an 

open-sky environment close to the sea. Then, the vehicle enters 

a narrow street along a wide road with two lanes adjacent to 

buildings. Due to the poor sky view, the GNSS cannot achieve 

trustworthy accuracy in this scenario. Moreover, there is a 

trajectory section where the vehicle passes through a tunnel. 

The trajectory and velocity information of the vehicle and the 

sky visibility information of this scenario is shown in Fig.10(A) 

and Fig.10(B). 

 
Fig.10. The velocity and sky visibility information of the vehicle. 

 

From the results, the sky visibility information cannot 

indicate the degree of shading of the vehicle in the tunnel. 

Therefore, some separate labels are required for the tunnel-

related spoofing scenario. In this trajectory, the area where the 

vehicle passes through the tunnel is shown in Fig.11(A). We 

present the positioning errors and uncertainties of the LiDAR, 

as shown in Fig.11(B). 

   

(A)                                                         (B) 
Fig.11. (A) is the real tunnel scene from Google Earth. (B) is 

positioning errors and uncertainties of LiDAR in Scenario 2. 

 

From the results, the uncertainty of LiDAR will become 

larger when the vehicle is just out of the tunnel. So, it is a better 

scenario to perform a GNSS attack. The final results of scenario 

classification models are shown in Fig.12. 

 
Fig.12. High-risk attack interval for scenario 2. The sky visibility-

related interval (the red route) and the tunnel-related interval (the pink 

route) are the high-risk attack area, and the black trajectory is the area 

unfavorable to attack. 

 

We specifically select the open-sky area (the red route) and 

the tunnel-related area (the pink route) to perform an aggressive 

GNSS spoofing attack. The experimental conditions are the 

same as in Scenario 1. The results show that the successful 

numbers of the constant value attack are only 8 and 10 for the 

two GNSS receivers, and the successful numbers of the 

exponential value attack are only 12 and 14. Moreover, only 18 

and 19 attacks can be successful in the whole interval for the 

two types of GNSS receivers with the model of the Fusion-

ripper. In contrast, with the scenario classification model, the 

numbers of successful attacks are 37 and 38, respectively.  

Finally, the success rate will eventually be calculated by the 

ratio of the number of successful spoofing 𝑛  and the total 

number of spoofing 𝑁, which can be expressed as: 

𝑠 =
𝑛

𝑁
× 100% (18) 

We calculate the spoofing success rate for the two scenarios, 

as shown in Fig.13. The spoofing success rate of the proposed 

method (about 75%) can be significantly improved compared 

with the traditional attack models (less than 40%). 

 
Fig.13. Spoofing success rate of different GNSS spoofing attack 

models in the two scenarios. 

 

Furthermore, some details should be noted from the 

experimental results. 

1)  The spoofing success rate of GNSS receiver NovAtel 

FlexPak6 is significantly higher than that of u-blox ZED-F9P. 

This is because the signal of NovAtel FlexPak6 has higher 
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accuracy and lower uncertainty, so it has higher influence on 

the position information when the MSF system is spoofed.  

2)  There are some open-sky areas in the two scenarios 

selected, that is, the areas with low GNSS and high LiDAR 

uncertainty or the victim just exiting the tunnel. If the vehicle 

always runs in a relatively deep urban area, it is possible to fail 

to find a high-risk scenario. 

In conclusion, the attack algorithm based on the scenario 

classification model is eventually validated by the real data with 

simulated spoofing attacks from different scenarios. Therefore, 

the experiment results in this section effectively validate the 

proposed GNSS spoofing attack model based on scenario 

classification models in Section III and Section Ⅳ. 

VI. CONCLUSION 

Different from the state-of-the-art method that performs all 

kinds of attempted spoofing attacks all the time, we take more 

steps to propose a spoofing attack scheme based on the scenario 

classification model in this paper. Attackers can perform 

efficient GNSS spoofing attacks based on sky visibility and 

tunnel information. Compared with the traditional models, the 

proposed scheme can actively select high-risk scenarios and 

better timing when the victim is in a scenario with high GNSS 

quality and poor LiDAR signal quality. Finally, the proposed 

GNSS spoofing attack algorithm for MSF systems is verified 

via real data with simulated spoofing attacks in different urban 

scenarios. The success rate can increase to 75% approximately. 

Therefore, the results show that the proposed scheme 

significantly improves the success rate of GNSS spoofing 

attacks.  
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